Wednesday, May 15, 2013

Arrhenius theory acid

Introduction :
According to Arrhenius an acid  is any substance that dissociates   to give  a H+ ion  in aqueous solution.

Thus an aqueous solution of hydrochloric acid will  show the presence of H+ ions and Cl- ions.
 Later it was found that the H+ ions have no free existence in water or in aqueous solution but exist in the solvated state as hydronium ion as H3O+.

  Thus according to Arrhenius definition of an acid,  any substance that will increase the concentration of H+ ions in water is said to be an acid.

  General Representation:  An Arrhenius acid  is generally represented by the formula with a H in the begining as HCl , H2SO4 , HNO3. All  acids that can donate a proton in aqueous solution or  can increase the concentration of H3O+ ions in solution  are called Arrhenius acids.The dissociation of an acid in water can be represented by the equation a follows:
 If HCl be the acid then the dissociation is given as
HCl((g)  +  H2O(l)    ---> H3O+  + Cl-

The advantage of the Arrhenius definition of an acid.


1) All protic acids that can dissociate in aqueous solution to increase the H+ ione concentration show similar properties such as :

Reaction with bases result in neutralisation of the acid and formation of water and a salt
example: HCl + NaOH----------> NaCl + H2O
                  HNO3 + KOH --------> KNO3 + H2O      

2)  The basicity of the acids depends upon number of H+ ions, an acid can releas in aqueous solution

3) The pH of any substance depends upon the number of H+ ions the substance can release in solution

Limitation of Arrhenius definition of acid>

1) Arrhenius definition of acid holds good only for acids in aqueous solution. For example
HCl (aq) ----------> H+(aq)  + Cl- (aq)
      H+ (aq) + H2O (l) ---------> H3O+ (aq)
    But HCl in gaseous state is neither acidic nor basic.

2) Acid not dissolved in (aq) solution cannot dissociate into H+ ions. For example
     HNO3 (l) + 2H2SO4 (l) -----------> NO++ (l) + H3O+ (l) + 2HSO4-   (l)
Here HNO3 acts as a base

3) Arrhenius definition of acid cannot account for the acidic character of AlCl3

No comments:

Post a Comment