Wednesday, May 15, 2013

How does electricity works

Introduction:

The basic electrical circuits consists of the following ;

The Source which generates power such as a generator,

the load which utilizes the power,

and two wires to carry the electrons act as conductor from the power source and back to power source.This is how the electricity will works.

                                        how does electricity works

Measure of electricity or power is Watts and Kilowatts.

Watts = (Volts X Amps).

Electron: In order to understand electrons, we need to have a understanding of the atom. Atom consists of  a nucleus(having protons and neutrons)  and electrons revolving around it in circular orbits.

How does electricity works

Current: Movement of charge carriers (electrons) from one place to another place is called as current.

One amp is defined as one coulomb of charge carriers passed through a cross section of conductor per unit time.That is  6.28 x 10^18 electrons per second.

Voltage: It is the electrical force that gives the energy to free electrons to move from one atom to another. Just as water needs some pressure to force it through a pipe, electrical current needs some force to make electron flow. "Volts" is the unit of measurement of "electrical pressure" that causes current flow. Voltage is also called as potential difference between two points along a conductor.

Load: Load is the one which consumes the generated energy

 The power source generates the voltage which force the electrons to flow through the conductors when load is connected and it is a closed loop. The load utilizes the power to convert electrical energy to some other form.

Importance of electricity:

Electricity is  life blood that flows in our society. Our survival based on electricity. Electricity generates in several forms. Electricity most basic generated form is lightning. Portable devices like torches,mobiles use batteries which is a form of static electricity.Sun is also one of the major source of electricity if we convert the radiated light energy to electricity with the help of photocells.

The very fundamentals of electricity starts with electrons. Electron flow depends upon the type of material . Some materials do not allow electrons to move through it freely from one atom to another, those type of materials called as Insulators. Some materials allow free flow of electrons those are good conductors of electricity called as conductors. The movement of electrons referred as current.

Electrons can freely move in conductors then why we need voltage ?

 Conductors having the movement of electrons in a random direction in order to make the the electrons to flow in a particular direction we need to impart energy for the electrons that energy is called as Voltage. We can compare this two terms with a dam having potential head as voltage and the stream of water flow can be compared with electron flow. The more the potential head in the dam the larger will be the flow of water.

A battery works in the similar way it is having two terminals, a positive terminal and a negative terminal. The source, whether may be generator or battery, will push the electrons to the negative terminus. The rate at which it pushes the electrons is the voltage. The equipment, electronics appliances you that will consume electricity  is called the load. The electrons will leave the negative side of the power source, energize the equipment, and flow to the positive side of the power source.

Resistance: It is the force that resists the flow of electrons.. The units of resistance Ohms..

OHM’S LAW:Ohm’s law  state that voltage  (V) in a circuit is directly proportional to the , current or amps are (I) .

 V=IR.

In  a light bulb. The thin wire inside  the bulb is called filament. When power is applied to the bulb, the tungsten filament resists the flow of electrons. We can calculate that resistance by Making Resistance as subject of formula, r=V/I. So a 60 Watt light bulb’s resistance would be 240 Ohms.

There are basically two types of electrical currents,
    Direct current (DC)

   Alternating current (AC).

Direct current :Here the magnitude of the current is constant through out the wave form .Example battery  produces the DC current that flows in one direction only that is moving directly from the negative terminal to the positive terminal of the battery.

Alternating current: The magnitude of the current continuously varies with time.Example of AC power sources Generator.The magnitude is varying with time so frequency comes into picture. Frequency can be defined as the number of cycles produced in a given unit of time.This is called Hertz (Hz) or Cycle.

How does electricity works

Advantages:

The advantage of alternating current is that from  power  generating stations send millions of volts from their power plants through small conductors to transformers that will step down to required voltages in the distribution end.

No comments:

Post a Comment